경사하강법
[핸즈온 머신러닝] 5. 정규화
5. Regularization 목차 5-1. 정규화 1. 과대적합 2. 비용 함수 3. 정규화된 선형 회귀 4. 정규화된 로지스틱 회귀 5. 릿지 회귀, 라쏘 회귀, 엘라스틱넷 5-2. 성능 측정법 5-1. 정규화 1. 과대적합 과대적합(overfitting) 모델이 훈련 데이터에는 너무 잘 맞지만 일반성이 떨어지는 현상 예시 만일 특성(feature)이 매우 많아지면, 훈련된 모델은 학습 데이터 셋에 매우 잘 맞을지 모름 그러나 새로운 데이터 샘플로 일반화되지 않을 수 있음 예로, 새로운 집 면적에 대해 집 값을 예측을 선형회귀를 이용한다고 하자. 왼쪽부터 순서대로 과소적합(underfitting), 알맞은 모델, 과대적합(overfitting)된 모델이다 또한 로지스틱 회귀(분류)에서도 아래와 같이..
[핸즈온 머신러닝] 4장. 로지스틱 회귀(분류)
4. Logistic Regression(Classification) 목차 4-1. 로지스틱 회귀(분류)와 모델 설계 1. 로지스틱 회귀(분류) 2. 가설 설계 3. 결정 경계 4-2. 비용 함수 1. 로지스틱 회귀와 비용함수 2. 단순화된 비용 함수와 경사 하강법 3. 고급 최적화 기법 4. 크로스 엔트로피 4-3. 다중 레이블 분류: one-vs-all 4-1. 로지스틱 회귀(분류)와 모델 설계 1. 로지스틱 회귀(분류) 로지스틱 회귀(logistic regression)란? 샘플이 특정 클래스에 속할 확률을 추정 추정된 확률이 50%이상이면 샘플이 해당 클래스에 속한다고 예측함 예시: 스팸/햄 메일, 악성/양성 종양 분류기의 종류 이진 분류기(Binary Classifier) 두 개 클래스를 구분 ..
[핸즈온 머신러닝] 3장. 다항 선형 회귀
3. Linear Regression with multiple variables 목차 3-1. 다항 선형 회귀 1. 다항 선형 회귀란? 2. 2개 이상의 특성 3. 경사하강법 4. 특성과 다항 회귀 3-2. 정규 방정식 3-1. 다항 선형 회귀 1. 다항 선형 회귀란? 단항 선형 회귀(이전 게시글 참고) https://codingsmu.tistory.com/111 [핸즈온 머신러닝] 2장. 단항 선형 회귀 2. Linear Regression with one variable 목차 1. 선형회귀란? 2. 모델설계 3. 비용 함수 4. 경사 하강법 1. 선형회귀란? 회귀(Regression) 연속적인 종속 변수와 한 개 이상의 독립 변수 사이의 관계를 추정하.. codingsmu.tistory.com 다항 ..
[핸즈온 머신러닝] 2장. 단항 선형 회귀
2. Linear Regression with one variable 목차 1. 선형회귀란? 2. 모델설계 3. 비용 함수 4. 경사 하강법 1. 선형회귀란? 회귀(Regression) 연속적인 종속 변수(y)와 한 개 이상의 독립 변수(x) 사이의 관계를 추정하는 통계적인 과정 종속 변수 : y, 결과 변수 독립 변수: x, (입력) 특성 관계: 모델(model), 가설(hypothesis) 회귀의 종류 특성의 개수에 따라 단항 선형 회귀: 특성 개수 한 개 다항 선형 회귀: 특성 개수 두 개 이상 정규화 방법에 따라 릿지 회귀 라쏘 회귀 엘라스틱넷 선형 회귀(Linear Regression) 특성의 가중치 합과 편향(bias) 상수를 더해 결과 변수를 예측하는 과정 단항 $\hat{y} = h_\th..
경사하강법과 손실함수
선형 회귀(Linear Regression) 선형 회귀는 머신러닝 알고리즘 중 가장 간단하면서도 딥러닝의 기초가 되는 개념이다 1차 함수로 이해하는 선형 회귀 $y=ax+b$ : 선형 회귀는 1차 함수로 표현 가능하다. 위와 같이 1차 함수의 기울기(slope)는 a이고, 절편(intercept)은 b이다 선형 회귀는 기울기와 절편을 찾는 것이 목표 고등과정에서 배운 1차 함수의 경우 x에 따른 y값을 찾는데 집중한 반면, 선형 회귀에서는 이와 반대로 x, y가 주어졌을 때 기울기 a와 절편 b를 찾는데 집중한다. 그래프를 통한 선형 회귀의 문제 해결 과정 이해 그래프에 찍힌 (x,y)좌표로 기울기와 절편을 추정하여 1차 함수를 추정해내는 것으로 선형 회귀로 만든 모델 또한 이런 모델을 통해 새로운 점에..