테스트데이터
[핸즈온 머신러닝] 1장. 머신러닝 소개
Introduction. Machine Learning 목차 1. 머신러닝이란? 2. 머신러닝은 왜 필요한가? 3. 머신러닝의 종류 4. 머신러닝의 주요 도전 과제 5. 테스트와 검증 1. 머신러닝이란? 머신러닝이란? 데이터로부터 학습하도록 컴퓨터를 프로그래밍하는 과학, 기술 명시적인 프로그래밍 없이 컴퓨터가 학습하는 능력을 갖추게 하는 연구분야(by Arthur Samuel, 1959, 기계학습 용어 대중화) 머신러닝의 예 : 스팸 필터(Spam Filter) 사용자가 스팸(Spam) 메일과 보통(Ham) 메일의 샘플을 사용해 스팸 메일을 구별하는 법을 배울 수 있는 머신러닝 프로그램 훈련 세트(Training set) : 학습을 위해 시스템을 사용하는 샘플 훈련 예제(Training example) ..