서포트벡터머신
[핸즈온 머신러닝] 6장. 서포트 벡터 머신
6. Support Vector Machine 목차 1. 분류 문제 최적화 2. 라지 마진이란? 3. 라지 마진 분류의 수학적 개념 4. 커널1 5. 커널2 6. 실전 SVM 1. 분류 문제 최적화 다른 관점에서 보는 로지스틱 회귀 $y=1 \to h_\theta(x) = 1$, 즉 $\theta^T x >> 0$ 이길 원함 $y=0 \to h_\theta(x) = 0$, 즉 $\theta^T x = 0$} \\ 0 & \text{otherwise} \end{cases} $ 로지스틱 회귀에는 확률개념을 사용하지만, SVM에는 사용하지 않음 로지스틱 회귀 : $H_\theta(x) = P(y=1 | x_j \theta)$ SVM의 경우 svm.predict(x)는 있으나 svm.decisionfunctio..